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The influence of the thermal conductivity of rigid boundaries is analysed for the
case when the onset of convection occurs in the form of a time-dependent mode. A
new form of long-wavelength convection is found which is disjunct from the high-
wavenumber thermal Rossby wave in the presence of infinitely conducting boundaries
usually considered.

1. Introduction
It is well known that the ratio λ between the thermal conductivity of the boundary

and that of the fluid has a profound influence on the onset of convection (Sparrow,
Goldstein & Jonsson 1964) and on its nonlinear evolution (Busse & Riahi 1980;
Proctor 1981; Riahi 1985). In all cases that have been investigated hitherto, however,
attention has been focused on steady convection flows. In the case of time-dependent
convection flows new aspects enter the problem and, in particular, the phase lag of
the fluctuating component of the temperature field in the boundary must be taken
into account. This subject is addressed in this paper where the case of thermal Rossby
waves in a rotating cylindrical annulus is considered as an example.

Convection in the fluid gap between two rotating coaxial cylinders, the inner (outer)
of which is cooled (heated), is driven by centrifugal buoyancy if the angular velocity
Ω is high enough such that Ω2r0 � g where r0 is the mean radius of the annular
region and g is the acceleration due to gravity. When a configuration is used as
shown in figure 1, the height of the fluid region varies with distance from the axis
and the onset of convection in the form of steady motions is no longer possible.
Instead the convection rolls or columns aligned with the axis of rotation exhibit the
dynamical properties of Rossby waves and propagate in the prograde direction. They
thus provide a convenient example for the study of the influence of boundaries of
low thermal conductivity in the case of time-dependent convection.

Convection in the form of thermal Rossby waves has been studied experimentally
(Busse & Carrigan 1974; Busse et al. 1997). Usually the conductivity of the boundaries
is much higher than that of the fluid. But recently laboratory observations of thermal
Rossby waves in liquid metals in an apparatus such as sketched in figure 1 have been
carried out by Jaletzky (1999). Although the analysis of this paper focuses on the
mathematical structure of the problem and is not suited for a qualitative comparison
with the measured data, the experiment has provided an additional motivation for
the analysis.
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Figure 1. Sketch of the geometrical configuration of the rotating cylindrical annulus.

2. Mathematical formulation of the problem
We consider the rotating cylindrical annulus as shown in figure 1. Using the

thickness D of the annular gap as length scale, D2/ν as time scale where ν is the kin-
ematic viscosity, and P (T2 − T1)/R as temperature scale where T1 and T2 are the
mean temperatures of the inner and outer boundaries, we can write the equations
for the stream function ψ and the deviation Θ of the temperature from its static
distribution in the form(
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)
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where the Rayleigh number R, the Prandtl number P and the Coriolis parameter η
are defined by

R =
γ(T2 − T1)Ω

2r0D
3

νκ
, P =

ν

κ
, η =

4η0ΩD
3

νL
.

Here γ and κ denote the thermal expansivity and thermal diffusivity of the fluid, L
is the average height of the fluid annulus and arctg η0 is the angle of the conical
boundary as indicated in figure 1. Assuming the narrow gap limit of the annulus, we
have introduced a Cartesian coordinate system with x, y and z in the radial, azimuthal
and axial directions, respectively. ∆2 stands for the Laplacian in the (x, y)-plane. In
the case of plane boundaries, arctg η0 = 0, the velocity field v can be described
entirely by the stream functions ψ(x, y, t) with vx = A∂yψ, vy = −A∂xψ where A
denotes an amplitude factor which we do not need to specify at this point. In the
limit arctg η0 � 1 the z-component of the velocity enters through the condition of
vanishing normal velocity at the conical boundaries and gives rise to the term with η
in equation (2.1a) after the equation for the vertical component of vorticity, ∆2ψ, is
averaged over the z-coordinate. Since ΩD2/ν � 1 is assumed a small value of arctg
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η0 is in accordance with a finite or even large value of η. For further details on the
derivation of equations (2.1) and their range of validity we refer to Busse (1986).

At the cylindrical walls no-slip conditions and a finite thermal conductivity will be
assumed,

ψ =
∂

∂x
ψ = Θ −Θe =

∂

∂x
Θ − λ ∂

∂x
Θe = 0 at x = ± 1

2
, (2.2)

where Θe denotes the deviation of the temperature from the static distribution in the
boundaries. Unless stated otherwise we shall restrict attention to the linear problem
of the onset of convection, for which the right-hand sides of equations (2.1) can be
dropped. Without losing generality we assume the y- and t-dependence of the solution
in the form exp{iαy − iωt}. There is no need to denote this dependence explicitly in
the linear analysis of the problem if the derivatives ∂/∂t and ∂/∂y in equations (2.1)
are just replaced by −iω and iα, respectively. The temperature distribution Θe within
the walls can then be readily derived,

Θe = Θe
0 exp{∓(α2 − iωPβ)1/2(x∓ 1

2
)} for x ? ± 1

2
, (2.3)

where infinitely thick walls have been assumed and β denotes κ divided by the
thermal diffusivity of the boundary. Using solution (2.3) we can eliminate Θe from
the boundary conditions (2.2) and wrie

∂xΘ = ∓λ(α2 − iωPβ)1/2Θ at x = ± 1
2
. (2.4)

If the walls are not infinitely thick, but exceed the gap width d by the factor δ,
then a boundary condition of the form (2.4) can still be derived with λ replaced by
λ∗ = λ coth(α2 − βiωP )1/2δ. As long as the argument of coth is not too small, this
replacement will not change the analysis described below in a substantial way. In a
similar way effects of finite curvature of the annulus could eventually be taken into
account.

3. Analysis of the linear problem
In order to obtain an asymptotic analytical solution of the linearized version of

equations (2.1) together with boundary conditions (2.2) and (2.4) we introduce an
expansion

Θ = Θ0 +Θ1 +Θ2 + . . . , ψ = ψ1 + ψ2 + . . . , (3.1)

where each succeeding term is asymptotically small in comparison with the preceding
one. We start by assuming that λ and α are small quantities in order to obtain

Θ0 = 1

just as one would get in the case arctg η0 = 0 with ω = 0. As a result we obtain the
equation (

∂4

∂x4
+ iαη

)
ψ1 = iα (3.2a)

for ψ1 which together with condition (2.2) is solved by

ψ1 = η−1

[
1− µ2 sinh 1

2
µ2 cosh µ1x− µ1 sinh 1

2
µ1 cosh µ2x

µ2 sinh 1
2
µ2 cosh 1

2
µ1 − µ1 sinh 1

2
µ1 cosh 1

2
µ2

]
, (3.2b)
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where µ1 and µ2 are the roots of µ4 = −iαη with positive real parts,

µ1 = exp{i3π/8}(αη)1/4, µ2 = exp{−iπ/8}(αη)1/4. (3.2c)

For Θ1 we now obtain the equation

∂2

∂x2
Θ1 = α2 − iωP + iαRψ1 (3.3a)

together with the boundary condition

∂
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2
. (3.3b)

Multiplication of equation (3.3a) by Θ0 and integration over the interval − 1
2
6 x 6 1

2
yields after two partial integrations of the left-hand side and use of condition (3.3b)
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The integral over ψ can be easily evaluated and a simple approximation can be
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where the expansion of coth z

coth z =
1

z
+
z

3
− z3

45
+

2z5

945
− z7

225× 21
+

2z9

243× 385
− · · · , (3.5b)

has been used (Abramowitz & Stegun 1965). The solvability condition (3.4) can thus
be written in the form(

R

720
− 1

)
α2 − iα3η

R

720× 504
= 2λ

√
α2 − iωPβ (3.6)

if terms of higher order than those denoted explicitly in expressions (3.5) are neglected.
We have also dropped iωP from the right-hand side of equation (3.6) since this term
turns out to be small compared to the others. After taking the squares of left-
and right-hand sides of (3.6), evaluating real and imaginary parts separately and
minimizing R with respect to α we find

Rc = 720

(
1 +

1

3

(
ηλ

14

)1/2
)
, αc = 12(7λ/η)1/2, ωcP =

28× 72×√2λ

ηβ
. (3.7a–c)

A comparison with direct integrations of the linear version of equations (2.1) with the
shooting method (Press et al. 1986) indicates that the asymptotic relations (3.7) appear
to be approximately valid far beyond the expected regime. In particular they provide
a good approximation for αcη ≈ 1 because of the rapid convergence of expansions
(3.5).

An example of the comparison of asymptotic and numerical results is shown in
figure 2 where the conditions for onset of convection have been presented in the
case η = 104 with β = λ−1. Besides the long-wavelength convection mode described
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Figure 2. Critical values Rc, αc and ωc for the onset of convection as a function of the conductivity
ratio λ in the case η = 104, β = λ−1. The thin lines show the asymptotic relationships (3.7). The
lines nearly parallel to the abszissa correspond to the high-wavenumber mode which is preferred
for large λ.
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Figure 3. Neutral curves R(α) (solid, left ordinate) and ω(α) (dashed, right ordinate) for
λ = 0.8, 0.5, 0.3, 0.1, 0 (from top to bottom) in the case P = 0.7, η = 400.

by relationships (3.7) the high-wavenumber mode familiar from the limit of infinitely
conducting boundaries (Busse 1970, 1986) is also indicated. It becomes the preferred
mode for the onset of convection for λ & 1, as expected. The appearance of two
distinct modes of convection corresponding to two separate minima of the R(α)-
dependence is characteristic for sufficiently large values of η, as can be seen from
figure 3 where R(α) has been plotted for various values of λ and η. The contrast
between the two modes increases with increasing η since the wavenumber of the long-
wavelength mode decreases in proportion to η−1/2 while the wavenumber of the other
mode is proportional to η1/3. This latter property of convection with a wavelength
smaller than the gap width also explains why this mode is rather insensitive to the
thermal boundary conditions at the cylindrical walls as is apparent from figure 2.
There is also little difference between stress-free and no-slip boundary conditions at
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x = ± 1
2

for large η as has been shown by Schnaubelt & Busse (1992) and in terms of
an asymptotic analysis by Plaut & Busse (2001).

The fact that the second minimum of the R(α)-curve corresponding to the solution
(3.7) disappears for low values of η is also evident from the property that the
expression (3.7b) for the critical wavenumber diverges for η → 0. In this limit
expressions (3.7) are not valid since the neglect of iωP in equation (3.6) can no longer
be justified. For η . 10 another balance becomes valid in which the term with η in
the basic equations is taken into account in a higher order. Starting with the ansatz
(3.1), but using tildes to distinguish the quantities from the ones previously used, we
obtain instead of equation (3.2a)

∂4

∂x4
ψ̃1 = iαΘ̃0 = iα (3.8a)

which is solved by

ψ̃1 = iα(x2 − 1
4
)2/4!. (3.8b)

Equation (3.3a) for Θ1 is replaced by

∂2

∂x2
Θ̃1 − α2 − iαR̃0ψ̃1 = 0 (3.9a)

which is solved by

Θ̃1 = α2

(
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− 7

16
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5

4
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)
(3.9b)

after the solvability condition has been satisfied with R̃0 = 720 and the boundary
condition ∂Θ̃1/∂x = 0 at x = ± 1

2
has been used. The solution of the equation for ψ̃2,

∂4

∂x4
ψ̃2 − 2α2 ∂

2

∂x2
ψ̃1 + iαηψ̃1 − iαΘ̃1 = 0, (3.10a)

is now given by

ψ̃2 =

(
x2 − 1

4

)2 [−iα3

7!

(
x6 − 13

4
x4 − 153

16
x2 +

517

64

)
+
α2η

8!

(
x4 − 11

6
x2 +

163

48

)]
(3.10b)

and the dependence of R on η enters through the solvability condition of the equation
for Θ̃2,

∂2

∂x2
Θ̃2 = α2Θ̃1 + iαR̃0ψ̃2 + iαR̃1ψ̃1 − iωP , (3.11a)

together with the boundary condition ∂Θ̃2/∂x = ∓λ√α2 − iωPβ at x = ± 1
2
. On

multiplying equation (3.11a) by Θ̃0 and integrating over x we obtain after using the
boundary condition in evaluating the left-hand side

R̃1α
2

6!
− 17

6× 7× 11
α4 − iηα3

7× 8× 9
+ iωP = 2λ

√
α2 − iωPβ. (3.11b)

Anticipating ωPβ � α2, we can easily determine the minimum of R̃1 as a function of
α and the critical values for the onset of convection,

Rc =
min
α (R̃0 + R̃1) = 720 + 2160

(
17

6× 7× 11

)1/3

λ2/3, (3.12a)
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Figure 4. Critical values Rc, αc and ωc for the onset of convection as a function of the Coriolis
parameter η in the case λ = 10−4 with β = λ−1. The thin lines which become asymptotic for
η → 0 correspond to expressions (3.12), while the thin lines approaching the numerical values in
the intermediate regime 10 . η . 104 correspond to expressions (3.7).

αc =

(
6× 7× 11

17

)1/3

λ1/3, (3.12b)

Pωc = ηλ
11

2× 17

(
1 + βλ2/3

(
17

6× 7× 11

)1/3
)−1

. (3.12c)

Expressions (3.12a, b) do not depend on η and are identical with those in a non-
rotating Rayleigh–Bénard layer (Busse & Riahi 1980). The condition ωPβ � α2 is
satisfied as long as η � min (λ1/3, λ−1/3/β). But this inequality does not have to be
satisfied very strictly because large numerical factors are involved on the right-hand
side.

In figure 4 numerically obtained critical values have been plotted as a function of
η in comparison with the asymptotic relationships (3.7) and (3.12). The curves clearly
demonstrate the changeover at about η ≈ 102λ−1/3 from the power laws (3.12) to
the ones given by (3.7). As is also apparent from figure 4, relationships (3.7) begin
to lose their validity as ηλ increases beyond unity since the assumption αη . 1 on
which expressions (3.7) are based becomes invalid. Efforts to derive still another set
of asymptotic relationships based on αη � 1 have failed and would hardly be useful
since the short-wavelength mode given by

αc =

(
ηP√

2(1 + P )

)1/3

, Rc = 3α4
c , ωc =

η

(1 + P )αc
, (3.13a–c)

and derived for the limit λ� 1 (Busse 1986; Plaut & Busse 2001) would be preferred.

4. Discussion
The new type of convection described by relationships (3.7) is unusual in that

viscous dissipation appears to play a lesser role in overcoming the constraint of
rotation than in the case of the thermal Rossby waves governed by (3.13) in the
large-η limit. Instead the Coriolis force associated with the deviation from geostrophy
is balanced primarily by thermal buoyancy. In this respect the new type of convection
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resembles the ‘thermal mode’ which has been discussed by Busse (1986) in the limit
of negligible dissipation.

It is of interest to evaluate the expression (3.2b) for the stream function ψ1 in the
same approximation as used for (3.5),

ψ1 =
iα

4!

(
x2 − 1

4

)2 [
1− iαη

8!

(
x4 − 11

6
x2 +

163

48

)
+ o

(
α2η2

)]
. (4.1)

As expected, ψ1 approaches ψ̃1 in the limit η → 0. But the fact that a real part
proportional to η contributes to ψ1 has the important consequence that a mean
flow proportional to the square of the amplitude of convection is generated when
the nonlinear problem posed by (2.1) is considered. Since there is no mean pressure
gradient directed in the azimuthal y-direction of the cylindrical annulus, the equation
for the mean zonal flow v̄y is given by

∂2

∂x2
v̄y =

∂

∂x
(vxvy) ≈ α

2
A2 d

dx

(
ψr

d

dx
ψi − ψi d

dx
ψr

)
, (4.2)

where the bar indicates the average over the y-coordinate and ψr, ψi denote the real
and the imaginary parts of ψ. The evaluation of (4.2) yields in a first approximation

v̄y ≈ α3η

4!8!6
A2

(
x2 − 1

4

)4(
x4 − 13

10
x2 +

21

80

)
. (4.3)

This expression corresponds to a prograde flow with a symmetric profile with respect
to the midplane of the gap. The amplitude A can be determined in terms of super-
critical values of the Rayleigh number, R − Rc. For small values of αη the explicit
expressions derived for rolls by Busse & Riahi (1980) can be used.

The result (4.3) should be seen in contrast to the mean flow of order A4 which has
been derived by Busse & Or (1986) in the case of stress-free cylindrical walls with
fixed temperatures. We conclude from this discussion that not only are new modes of
convection introduced by low thermal conductivities of the walls, but the dynamical
properties of the convection are affected as well.

Since the goal of this paper has been the elucidation of the new dynamical balance
that becomes possible in the limit of low thermal conductivity of the boundaries,
we have tried to reduce the number of parameters of the problem through the
consideration of limiting cases. For comparisons with experimental observations
numerical determinations of critical conditions will be needed. It seems likely that
the unexpected large wavelength of thermal Rossby waves seen in the experiment
of Jaletzky (1999) in which λ assumes a value of the order unity can be explained
quantitatively on the basis of such an analysis, which will be done in the future.
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